Abstract

Online-to-offline (O2O) commerce, e.g., the internet celebrity economy, provides a seamless service experience between online commerce and offline bricks-and-mortar commerce. This type of commerce model is closely related to location-based social networks (LBSNs), which incorporate mobility patterns and human social ties. Personalized point-of-interest (POI) recommendations are crucial for O2O commerce in LBSNs; such recommendations not only help users explore new venues but also enable many location-based services, e.g., the targeting of mobile advertisements to users. However, producing personalized POI recommendations for O2O commerce is highly challenging, since LBSNs involve heterogeneous types of data and the user-POI matrix is very sparse. LBSNs have substantially altered how people interact by sharing a wide range of user information, such as the products and services that users use and the places and events that users visit. To address these challenges in O2O commerce LBSNs, we analyze users’ check-in behaviors in detail and introduce the concept of a heterogeneous information network (HIN). Then, we propose a HIN-based POI recommendation system, which consists of two components: an improved singular value decomposition (SVD++) and factorization machines (FMs). The results of experiments on two real-world O2O commerce websites, namely, Gowalla and Foursquare, demonstrate that our method is more accurate than baseline methods. Additionally, a case study of the bricks-and-mortar brand of internet celebrity indicates that our proposed POI recommendation system can be used to conduct online promotion and purchasing to drive offline marketing and consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.