Abstract

Herein, we introduce a methodology for estimating the absorbed dose in organs at risk that is based on specified clinically derived radiopharmaceutical biodistributions and personalized anatomical characteristics. To evaluate the proposed methodology, we used realistic Monte Carlo (MC) simulations and computational pediatric models to calculate a parameter called in this work the "specific absorbed dose rate" (SADR). The SADR is a unique quantitative metric in that it is specific to a particular organ. It is defined as the absorbed dose rate in an organ when the biodistribution of radioactivity over the whole body is considered. Initially, we applied a validation procedure that calculated specific absorbed fractions (SAFs) from mono-energetic photon sources in the range of 10keV-2MeV and compared them with previously published data. We calculated the SADRs for five different radiopharmaceuticals (99m Tc-MDP, 123 I-mIBG, 131 I-MIBG, 131 I-NaI, and 153 Sm-EDTMP) based on their biodistributions at four or five different times; the biodistributions were derived from the clinical scintigraphic data of pediatric patients. We used six models representing male and female patients aged 5, 8, and 14yr to investigate the absorbed dose variability due to anatomical variations. The GATE Monte Carlo toolkit was used to calculate absorbed doses per organ. Finally, we compared the SADR methodology to that of OLINDA/EXM 1.1 using rescaled masses according to the studied models. Four target organs were considered for calculating the absorbed doses. The ratios of SAFs calculated with GATE simulations to those based on previously published data were between 0.9 and 2.2 when the liver was used as a source organ. Subsequently, we used GATE to calculate a dataset of SADRs for the six pediatric models. The SADRs for pediatric models whose total body weights ranged from 20 to 40kg varied up to approximately 90%, whereas those for models of similar body masses varied less than 15%. Finally, we found absorbed dose discrepancies of approximately 10-150% between the SADR methodology and OLINDA for two different radiopharmaceuticals. Absorbed doses from SADRs and from individualized S-values in the same pediatric model differed approximately 1-50%. Because pediatric radiopharmaceutical dosimetric estimates demonstrate large variation due to the patient's anatomical characteristics, personalized data should be considered. Using our SADR method in a larger population of phantoms and for a variety of radiopharmaceuticals could enhance the personalization of dosimetry in pediatric nuclear medicine. The proposed methodology provides the advantage of creating time-dependent organ dose rate curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.