Abstract

Collaborative filtering is widely used in recommendation system. Our work is motivated by the observation that users caught in their attention relationship network, and their opinions about items will be directly or indirectly affected by others through such a network. Based on behaviours of users with similar interest, the technique focuses on the use of their opinions to recommend items. Therefore, the quality of similarity measure between users or items has a great impact on the accuracy of recommendation. This paper proposes a new recommendation algorithm with graph-based model. The similarity between two users (or two items) is computed from the connections on graph with nodes of users and items. The computed similarity measure is based on probabilistic neural networks to generate predictions. The model is evaluated on a recommendation task which suggests that which videos users should watch based on what they watched in the past. Our experimental results on the YouKu and Epinions datasets demonstrate the effectiveness of the presented approach in comparison with both collaborative filtering with traditional similarity measures and simplex graph-based methods and further improve user satisfaction, our approach can better improve the overall recommendation performance in precision, recall and coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.