Abstract

Exploration of the nature of the relationship between short-term and long-term synaptic plasticity should aid our understanding of their roles in brain function. The effects of inducing long-term potentiation on short-term facilitation at CA1 synapses in the stratum radiatum of the intact hippocampus were examined by recording the slope of the field excitatory postsynaptic potential in both urethane and freely behaving adult rats. Facilitation of the second synaptic response to paired-pulse stimulation (40 ms interstimulus interval) was monitored before and after the induction of long-term potentiation by high-frequency stimulation (10 trains of 20 pulses at 200 Hz). The tetanus triggered a rapid overall reduction in paired-pulse facilitation that persisted for at least 2 h. In the anaesthetized animals a detailed correlation analysis revealed that initial paired-pulse facilitation level correlated strongly with the subsequent reduction in paired-pulse facilitation and the magnitude of long-term potentiation. The reduction in paired-pulse facilitation also correlated with long-term potentiation magnitude. These relationships were not observed in animals with low initial degrees of paired-pulse facilitation. It was concluded that the relative contribution of different expression mechanisms of long-term potentiation varies depending on the initial facilitation characteristics of the synapses. Furthermore, the temporal selectivity and gain control of synapses can be altered persistently in the intact hippocampus. This suggests that there is considerable variation in the fidelity of temporal information storage at different synapses during learning and memory in the CA1 area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call