Abstract

Single-atom catalyst (SAC) is one of the newest catalysts, and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability. We designed and synthesized a Fe-N decorated graphene nanosheet (Fe-N5/GN SAC) with the coordination number of five. Through enzymology and theoretical calculations, the Fe-N5/GN SAC has outstanding intrinsic peroxidase-like catalytic activity due to single-atom Fe site with five-N-coordination structure. We explored its potential on lung cancer therapy, and found that it could kill human lung adenocarcinoma cells (A549) by decomposing hydrogen peroxide (H2O2) into toxic reactive oxygen species (ROS) under acidic microenvironment in three-dimensional (3D) lung cancer cell model. Our study demonstrates a promising application of SAC with highly efficient single-atom catalytic sites for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call