Abstract

An aluminium-doped lithium lanthanum titanate (A-LLTO) solid electrolyte was prepared using a simple citrate-gel method, and this was followed by a pelletization and the conventional sintering process. When the sintering time was varied at 1350°C for the synthesis of the A-LLTO, the A-LLTO ceramic that was sintered at 1350°C for 6h exhibited the highest ionic conductivity of 3.17×10−4Scm−1 at 25°C. In addition, the stability and durability of the synthesized A-LLTO ceramic was tested through a one-month aqueous-solution immersion for which the pH values were varied between 0 and 14. The stability of the A-LLTO is the highest in the alkaline environment; furthermore, for its use in the aqueous-electrolyte environment, a protected lithium electrode (PLE) structure was made by combining the lithium (Li) metal, a lithium phosphorous oxynitride (LiPON) interlayer, and the A-LLTO, whereby the LiPON interlayer prevented a direct reaction between the Li metal and the A-LLTO. The Li-LiCoO2 and Li-O2 cells comprising the PLE exhibited a superior electrochemical performance when they were used in the alkaline 1M LiNO3-electrolyte environment. After 100 cycles of the charge-discharge at the 1C rate, the aqueous Li-LiCoO2 cells maintained 59.3% of the initial capacity with a coulombic efficiency of 98.3%. In addition, the aqueous Li-O2 cell operated stably for 40 cycles under the limited capacity mode of 0.5mAhcm−2. The outstanding performance of the Li-metal-based cells originates from the A-LLTO solid electrolyte, due to the latter’s high stability, ionic conductivity, and an effective suppression effect regarding the dendritic growth of the Li.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call