Abstract

In this paper, we generalize a permutation model for free random variables which was first proposed by Biane in \cite{biane}. We also construct its classical probability analogue, by replacing the group of permutations with the group of subsets of a finite set endowed with the symmetric difference operation. These constructions provide new discrete approximations of the respective free and classical Wiener chaos. As a consequence, we obtain explicit examples of non random matrices which are asymptotically free or independent. The moments and the free (resp. classical) cumulants of the limiting distributions are expressed in terms of a special subset of (noncrossing) pairings. At the end of the paper we present some combinatorial applications of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.