Abstract
In 1977 Foata proved bijectively, among other things, that the joint distribution of ascent and distinct nonzero value numbers on the set of subexcedant sequences is the same as that of descent and inverse descent numbers on the set of permutations, and the generating function of the corresponding bistatistics is the double Eulerian polynomial. In 2013 Foata’s result was rediscovered by Visontai as a conjecture, and then reproved by Aas in 2014.In this paper, we define a permutation code (that is, a bijection between permutations and subexcedant sequences) and show the more general result that two 5-tuples of set-valued statistics on the set of permutations and on the set of subexcedant sequences, respectively, are equidistributed. In particular, these results give another bijective proof of Foata’s result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.