Abstract

The mechanisms by which peripheral, hypoxia-sensitive chemosensory cells modulate the output from the respiratory central pattern generator (CPG) remain largely unknown. In order to study this topic at a fundamental level, we have developed a simple invertebrate model system, Lymnaea stagnalis wherein we have identified peripheral chemoreceptor cells (PCRCs) that relay hypoxia-sensitive chemosensory information to a known respiratory CPG neuron, right pedal dorsal 1 (RPeD1). Significance of this chemosensory drive was confirmed via denervation of the peripheral sensory organ containing the PCRCs, and subsequent behavioral observation. This study provides evidence for direct synaptic connectivity between oxygen sensing PCRCs and a CPG neuron, and describes a unique model system appropriate for studying mechanisms of hypoxia-induced, respiratory plasticity from the level of an identified synapse to whole animal behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.