Abstract

In the first part of this work, the local singularity of non-smooth dynamical systems was discussed and the criteria for the grazing bifurcation were presented mathematically. In this part, the fragmentation mechanism of strange attractors in non-smooth dynamical systems is investigated. The periodic motion transition is completed through grazing. The concepts for the initial and final grazing, switching manifolds are introduced for six basic mappings. The fragmentation of strange attractors in non-smooth dynamical systems is described mathematically. The fragmentation mechanism of the strange attractor for such a non-smooth dynamical system is qualitatively discussed. Such a fragmentation of the strange attractor is illustrated numerically. The criteria and topological structures for the fragmentation of the strange attractor need to be further developed as in hyperbolic strange attractors. The fragmentation of the strange attractors extensively exists in non-smooth dynamical systems, which will help us better understand chaotic motions in non-smooth dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.