Abstract

In this paper, the periodic solution for the local fractional Boussinesq equation can be obtained in the sense of the local fractional derivative. It is given by applying direct integration with symmetry condition. Meanwhile, the periodic solution of the non-differentiable type with generalized functions defined on Cantor sets is analyzed. As a result, we have a new point to look the local fractional Boussinesq equation through the local fractional derivative theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.