Abstract

Based on the classical Ross-Macdonald model, in this paper we propose a periodic malaria model to incorporate the effects of temporal and spatial heterogeneity on disease transmission. The temporal heterogeneity is described by assuming that some model coefficients are time-periodic, while the spatial heterogeneity is modeled by using a multi-patch structure and assuming that individuals travel among patches. We calculate the basic reproduction number [Formula: see text] and show that either the disease-free periodic solution is globally asymptotically stable if [Formula: see text] or the positive periodic solution is globally asymptotically stable if [Formula: see text]. Numerical simulations are conducted to confirm the analytical results and explore the effect of travel control on the disease prevalence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call