Abstract

In this paper, a peridynamic-enhanced finite element formulation is introduced for the numerical simulation of thermo–hydro–mechanical coupled problems in saturated porous media with cracks. The proposed approach combines the Finite Element (FE) method for governing heat conduction–advection and fluid flow in the fractured porous domain, and the Peridynamic (PD) method for describing solid phase deformation and capturing crack propagation. Firstly, the consolidation problem of a porous column is simulated by using the proposed approach. The m- and δ-convergence studies are carried out with the isothermal condition to determine suitable discretization parameters for the PD model. Subsequently, non-isothermal conditions are considered, and the accuracy and reliability of the proposed approach are validated by comparing the numerical solutions with those obtained from a FE-only model. Furthermore, several numerical examples focusing on scenarios involving cracks are solved and presented to further highlight the capabilities of the proposed approach in addressing heat conduction–advection problems in fractured saturated porous media, as well as hydraulic fracture propagation problems with considerations of thermo–hydro–mechanical coupled effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.