Abstract

Discrete Fourier transform (DFT) finds various applications in signal processing, image processing, artificial intelligent, and fuzzy logic etc. DFT is often computed efficiently with Fast Fourier transform (FFT). The modified split radix FFT (MSRFFT) algorithm implements a length-N=2 m DFT achieving a reduction of arithmetic complexity compared to split-radix FFT (SRFFT). In this paper, a simplified algorithm is proposed for the MSRFFT algorithm, reducing the number of real coefficients evaluated from 5/8N − 2t o 15/32N − 2 and the number of groups of decomposition from 4 to 3. A implementation approach is also presented. The approach makes data-path of the MSRFFT regular similar to that of the radix-2 FFT algorithm. The experimental results show that (1) MSRFFT consumes less time on central processing units (CPUs) with sufficient cache than existing algorithms; (2) the proposed implementation method can save execution time on CPUs and general processing units (GPUs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.