Abstract

Abstract Direct carbon fuel cells (DCFCs) have recently attracted great interest because they could provide a considerably more efficient means of power generation in comparison with conventional coal-fired power plants. Among various types of DCFCs under development, a hybrid system offers the combined advantages of solid oxide and molten carbonate electrolytes; however, there is a significant technical challenge in terms of power capability. Here, we report an experimental study demonstrating how anode microstructure influences the power-generating characteristics of hybrid DCFCs. The anode microstructure (pore volume and surface area) is modified by using poly(methyl methacrylate) (PMMA) pore-formers. Polarization studies indicate that cell performance is strongly dependent on the anode surface area rather than on the pore volume. The incorporation of PMMA-derived pores into the anode leads to improved power capability at typical operating temperatures, which is attributed to an enlarged active zone for electrochemical CO oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.