Abstract
In today's computer systems, the disk I/O subsystem is often identified as the major bottleneck to system performance. One proposed solution is the so called redundant array of inexpensive disks (RAID). We examine the performance of two of the most promising RAID architectures, the mirrored array and the rotated parity array. First, we propose several scheduling policies for the mirrored array and a new data layout, group-rotate declustering, and compare their performance with each other and in combination with other data layout schemes. We observe that a policy that routes reads to the disk with the smallest number of requests provides the best performance, especially when the load on the I/O system is high. Second, through a combination of simulation and analysis, we compare the performance of this mirrored array architecture to the rotated parity array architecture. This latter study shows that: 1) given the same storage capacity (approximately double the number of disks), the mirrored array considerably outperforms the rotated parity array; and 2) given the same number of disks, the mirrored array still outperforms the rotated parity array in most cases, even for applications where I/O requests are for large amounts of data. The only exception occurs when the I/O size is very large; most of the requests are writes, and most of these writes perform full stripe write operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.