Abstract
The choice of sensitivity analysis methods for a model often relies on the behavior of model outputs. However, many building energy models are “black-box” functions whose behavior of simulated results is usually unknown or uncertain. This situation raises a question of how to correctly choose a sensitivity analysis method and its settings for building simulation. A performance comparison of nine sensitivity analysis methods has been carried out by means of computational experiments and building energy simulation. A comprehensive test procedure using three benchmark functions and two real-world building energy models was proposed. The degree of complexity was gradually increased by carefully-chosen test problems. Performance of these methods was compared through the ranking of variables’ importance, variables’ sensitivity indices, interaction among variables, and computational cost for each method. Test results show the consistency between the Fourier Amplitude Sensitivity Test (FAST) and the Sobol method. Some evidences found from the tests indicate that performance of other methods was unstable, especially with the non-monotonic test problems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.