Abstract
The technology of tunnel boring machine (TBM) has been widely applied for underground construction worldwide; however, how to ensure the TBM tunneling process safe and efficient remains a major concern. Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction, for which a reliable prediction helps optimize the TBM performance. Here, we develop a hybrid neural network model, called Attention-ResNet-LSTM, for accurate prediction of the TBM advance rate. A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model. The evolutionary polynomial regression method is adopted to aid the selection of input parameters. The results of numerical experiments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error. Further, parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy. A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters. The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata. Finally, data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model. The results indicate that, compared to the conventional ResNet-LSTM model, our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Rock Mechanics and Geotechnical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.