Abstract

This paper discusses a new work-scheduling algorithm for parallel search of single-agent state spaces, called transposition-table-driven work scheduling, that places the transposition table at the heart of the parallel work scheduling. The scheme results in less synchronization overhead, less processor idle time, and less redundant search effort. Measurements on a 128-processor parallel machine show that the scheme achieves close-to-linear speedups; for large problems the speedups are even superlinear due to better memory usage. On the same machine, the algorithm is 1.6 to 12.9 times faster than traditional work-stealing-based schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.