Abstract
Stereo vision is a subfield of computer vision that tends to an essential research issue of reproducing the three-dimensional directions and focuses for depth estimation. This paper gives a relative investigation of stereo vision and matching techniques, utilised to resolve the correspondence problem. The investigation of matching algorithms is done by the use of extensive experiments on the Middlebury benchmark dataset. The tests concentrated on an examination of three stereovision techniques namely mean shift algorithm (MSA), seed growing algorithm (SGA) and multi-curve fitting (MCF) algorithm. With a specific end goal to evaluate the execution, some statistics related insights were computed. The experimental results demonstrated that best outcome is attained by the MCF algorithm in terms of depth estimation, disparity estimation and CT. The presented MCF algorithm attains a minimum computation time (CT) of 2 s whereas the other MSA and SGA require a maximum CT of 8.9 s and 7 s, respectively. The simulation results verified that the MCF algorithm reduces the processing time in a significant way than the compared methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.