Abstract

This paper investigates the trajectory optimization and tracking control for the perch maneuver of a fixed-wing unmanned aerial vehicle (UAV). An important aspect of the perch maneuver is that it provides a fast landing for UAVs on fixed points, which could be useful to solve the problem of landing dornes on warship or in tight areas. Optimal trajectory optimization is one of the main concerns of the technology, which is optimised for the shortest trajectory length and minimal energy consumption of the actuator in this paper. In addition, high-precision trajectory tracking control is required, but it is difficult due to the contradiction between variable model parameters and high-precision trajectory tracking control at high angles of attack flight. Toward this end, we developed a cascade incremental nonlinear dynamic inverse (INDI) controller which has a great robustness to the model uncertainties. As a result of simulation, it is verified that the INDI controller can maintain high trajectory tracking accuracy even at a large model deviation, and that it has a better control performance than a linear quadratic controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.