Abstract

BackgroundThe gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together. This explains why gait analysis is important and increasingly used nowadays for the diagnosis of many different types (neurological, muscular, orthopedic, etc.) of diseases. This paper introduces a novel method to quickly visualize the different parts of the body related to an asymmetric movement in the human gait of a patient for daily clinical usage. The proposed gait analysis algorithm relies on the fact that the healthy walk has (temporally shift-invariant) symmetry properties in the coronal plane. The goal is to provide an inexpensive and easy-to-use method, exploiting an affordable consumer depth sensor, the Kinect, to measure the gait asymmetry and display results in a perceptual way.MethodWe propose a multi-dimensional scaling mapping using a temporally shift invariant distance, allowing us to efficiently visualize (in terms of perceptual color difference) the asymmetric body parts of the gait cycle of a subject. We also propose an index computed from this map and which quantifies locally and globally the degree of asymmetry.ResultsThe proposed index is proved to be statistically significant and this new, inexpensive, marker-less, non-invasive, easy to set up, gait analysis system offers a readable and flexible tool for clinicians to analyze gait characteristics and to provide a fast diagnostic.ConclusionThis system, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject, can be easily exploited for disease progression, recovery cues from post-operative surgery (e.g., to check the healing process or the effect of a treatment or a prosthesis) or might be used for other pathologies where gait asymmetry might be a symptom.

Highlights

  • The gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together

  • The proposed index is proved to be statistically significant and this new, inexpensive, marker-less, non-invasive, easy to set up, gait analysis system offers a readable and flexible tool for clinicians to analyze gait characteristics and to provide a fast diagnostic. This system, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject, can be exploited for disease progression, recovery cues from post-operative surgery or might be used for other pathologies where gait asymmetry might be a symptom

  • In this paper, we have presented a new gait analysis system, based on Kinect depth sensor, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject and an index (ASI), that was proved statistically significant with an approximately 98.75 % confidence value

Read more

Summary

Introduction

The gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together. This explains why gait analysis is important and increasingly used nowadays for the diagnosis of many different types (neurological, muscular, orthopedic, etc.) of diseases. Different parts of the body can be involved or affected, which make gait analysis a complex procedure and a reliable and accurate indicator for early detection (and follow-up) of a wide range of pathologies It makes a 3D gait analysis (3DGA) procedure a powerful early clinical diagnostic tool [6] that is reliable and non-invasive, and which has been used successfully until now for screening test, detection and tracking of disease progression, joint deficiencies, pre-surgery planning, as well as recovery assessment from post-operative surgery or accident (rehabilitation).

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call