Abstract
ABSTRACTPolyglutamine (polyQ) diseases represent a group of progressive neurodegenerative disorders that are caused by abnormal expansion of CAG triplet nucleotides in disease genes. Recent evidence indicates that not only mutant polyQ proteins, but also their corresponding mutant RNAs, contribute to the pathogenesis of polyQ diseases. Here, we describe the identification of a 13-amino-acid peptide, P3, which binds directly and preferentially to long-CAG RNA within the pathogenic range. When administered to cell and Drosophila disease models, as well as to patient-derived fibroblasts, P3 inhibited expanded-CAG-RNA-induced nucleolar stress and suppressed neurotoxicity. We further examined the combined therapeutic effect of P3 and polyQ-binding peptide 1 (QBP1), a well-characterized polyQ protein toxicity inhibitor, on neurodegeneration. When P3 and QBP1 were co-administered to disease models, both RNA and protein toxicities were effectively mitigated, resulting in a notable improvement of neurotoxicity suppression compared with the P3 and QBP1 single-treatment controls. Our findings indicate that targeting toxic RNAs and/or simultaneous targeting of toxic RNAs and their corresponding proteins could open up a new therapeutic strategy for treating polyQ degeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.