Abstract

Membrane proteins play critical roles at the cell surface and their misfunction is a hallmark of many human diseases. A precise evaluation of the plasma membrane proteome is therefore essential for cell biology and for discovering novel biomarkers and therapeutic targets. However, the low abundance of this proteome relative to soluble proteins makes it difficult to characterize, even with the most advanced proteomics technologies. Here, we apply the peptidisc membrane mimetic to purify the cell membrane proteome. Using the HeLa cell line as a reference, we capture 500 different integral membrane proteins, with half annotated to the plasma membrane. Notably, the peptidisc library is enriched with several ABC, SLC, GPCR, CD, and cell adhesion molecules that generally exist at low to very low copy numbers in the cell. We extend the method to compare two pancreatic cell lines, Panc-1 and hPSC. Here we observe a striking difference in the relative abundance of the cell surface cancer markers L1CAM, ANPEP, ITGB4, and CD70. We also identify two novel SLC transporters, SLC30A1 and SLC12A7, that are highly present in the Panc-1 cell only. The peptidisc library thus emerges as an effective way to survey and compare the membrane proteome of mammalian cells. Furthermore, since the method stabilizes membrane proteins in a water-soluble state, members of the library, here SLC12A7, can be specifically isolated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.