Abstract

SNAP-25, a synaptosomal associated membrane protein of 25 kDa, participates in the presynaptic process of vesicle-plasma membrane fusion that results in neurotransmitter release at central nervous system synapses. SNAP-25 occurs in neuroendocrine cells and, in analogy to its role in neurons, has been implicated in catecholamine secretion, yet the nature of the underlying mechanism remains obscure. Here we use an anti-SNAP-25 monoclonal antibody to show that SNAP-25 is localized at the cytosolic surface of the plasma membrane of chromaffin cells. This antibody inhibited the Ca 2+-evoked catecholamine release from digitonin-permeabilized chromaffin cells in a time- and dose-dependent manner. Remarkably, a 20-mer synthetic peptide representing the sequence of the C-terminal domain of SNAP-25 blocked Ca 2+-dependent catecholamine release with an IC 50 = 20 μM. The inhibitory activity of the peptide was sequence-specific as evidenced by the inertness of a control peptide with the same amino acid composition but random order. The C-terminal segment of SNAP-25, therefore, plays a key role in regulating Ca 2+-dependent exocytosis, presumably mediated via interactions with other protein components of the fusion complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.