Abstract

Female Aedes aegypti mosquitoes typically mate only once with one male in their lifetime, a behavior known as "monandry" [1]. This single mating event provisions the female with sufficient sperm to fertilize the >500 eggs she will produce during her ∼4- to 6-week lifespan in the laboratory [2]. Successful mating induces lifetime refractoriness to subsequent insemination by other males, enforcing the paternity of the first male [3-5]. Ae. aegypti mate in flight near human hosts [6], and females become refractory to remating within seconds [1, 3, 4], suggesting the existence of a rapid mechanism to prevent female remating. In this study, we implicate HP-I, an Aedes- and male-specific peptide transferred to females [7], and its cognate receptor in the female, NPYLR1 [8], in rapid enforcement of paternity. HP-I mutant males were ineffective in enforcing paternity when a second male was given access to the female within 1hr. NPYLR1 mutant females produced mixed paternity offspring at high frequency, indicating acceptance of multiple mates. Synthetic HP-I injected into wild-type, but not NPYLR1 mutant, virgins reduced successful matings. Asian tiger mosquito (Ae. albopictus) HP-I peptides potently activated Ae. aegypti NPYLR1. Invasive Ae. albopictus males are known to copulate with and effectively sterilize Ae. aegypti females by causing them to reject future mates [9]. Cross-species transfer of sperm and active seminal fluid proteins including HP-I may contribute to this phenomenon. This signaling system promotes rapid paternity enforcement within Ae. aegypti but may promote local extinction in areas where they compete with Ae. albopictus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.