Abstract

A deoxynivalenol (DON) epitope clone (D8) was obtained by phage display technology using anti-DON monoclonal antibodies as a target molecule. Subsequently, a DON antigen mimic (D8-maltose-binding protein [MBP]) was synthesized by fusing the mimic epitope peptide with MBP. An enzyme-linked immunosorbent assay (ELISA) and urchin-like gold nanoparticle immunochromatographic assay was developed based on D8-MBP for detection of DON in maize and wheat. The half-maximal inhibitory concentration, lower detection limit, and linear range of the D8-MBP ELISA were 57.98 ± 0.97, 9.83, and 11.32–286.77 ng/mL, respectively. The sensitivity of the D8-MBP ELISA was nearly 2.5 times higher than that of traditional ELISA using DON-bovine serum albumin (BSA). The detection threshold of the colloidal gold immunochromatographic assay for D8-MBP was 25 ng/mL. Thus, D8-MBP could be used to replace the traditional DON-BSA antigen for the immunological detection of DON, permitting low cost, rapid detection of DON.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call