Abstract
Antisera against peptide histidine isoleucine and peptide histidine methionine were found to label a subpopulation of amacrine and displaced amacrine cells in the rabbit retina with processes ramifying in sublaminas 1. 3 and 5 of the inner plexiform layer. Preadsorption controls demonstrated that this immunoreactivity was specific for a peptide histidine isoleucine- or peptide histidine methionine-like (peptide histidine isoleucine peptide histidine methionine-like) peptide. and was not caused by cross-reactivity of the peptide histidine isoleucine or peptide histidine methionine antibodies with vasoactive intestinal peptide vasoactive intestinal peptide. In double-label studies, vasoactive intestinal peptide and peptide histidine isoleucine peptide histidine methionine-like immunoreactivity were colocalized in the same population of retinal neurons. Electron microscopic analysis revealed that the peptide histidine isoleucine peptide histidine methionine-labelled cells interacted with processes of bipolar cells, amacrine cells and ganglion cells. Peptide histidine methionine and peptide histidine isoleucine were slightly less potent than vasoactive intestinal peptide in stimulating adenylate cyclase activity in the rabbit retina, while the related peptides secretin, glucagon, and the C-terminal vasoactive intestinal peptide fragment, vasoactive intestinal peptide (10–28), showed little or no stimulatory activity. Stimulation of adenylate cyclase by high concentrations of vasoactive intestinal peptide and peptide histidine methionine were non-additive. These results suggest that a peptide histidine isoleucine peptide histidine methionine-like peptide may function as a neuroactive peptide in the mammalian retina, and that this peptide appears to be cosynthesized and colocalized with vasoactive intestinal peptide and to mimic the activity of vasoactive intestinal peptide through interaction with vasoactive intestinal peptide receptor-adenylate cyclase complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.