Abstract

Cyclin-dependent kinase-5 (Cdk5) is a serine/threonine kinase activated by its neuron-specific activator, p35, or its truncated form, p25. It has been proposed that the deregulation of Cdk5 activity by association with p25 in human brain tissue disrupts the neuronal cytoskeleton and may be involved in neurodegenerative diseases such as Alzheimer's disease. In this study, we demonstrate that a short peptide (amino acid residues 154-279; Cdk5 inhibitory peptide; CIP), derived from p35, specifically inhibits Cdk5 activity in vitro and in HEK293 cells cotransfected with the peptide and Cdk5/p25, but had no effect on endogenous cdc2 kinase activity. Moreover, we demonstrate that the phosphorylation of tau in HEK293 cells, cotransfected with Cdk5/p25 and CIP, is effectively reduced. These results suggest that CIP specifically inhibits both Cdk5/p25 complex activity and the tau hyperphosphorylation induced by Cdk5/p25. The elucidation of the molecular basis of p25 activation and CIP inhibition of Cdk5 activity may provide insight into mechanisms underlying the pathology of Alzheimer's disease and contribute to therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.