Abstract
Background Circulating monocytes play a critical role in the pathogenesis of atherosclerosis. Monocyte homing to sites of atherosclerosis is primarily initiated by selectin. Thus, blockade of the interaction of selectins and their ligands holds a significant role in monocyte homing which might be a potential approach to treat atherosclerosis. Here, we investigated the efficacy of a novel peptide analogue of selectin ligands IELLQAR in atherosclerosis. Methods and Results In this study, we firstly measured the effect of the IELLQAR selectin-binding peptide on the inhibition of binding of selectins to monocytes by flow cytometry, which exhibited a dose-dependent inhibitory effect on the binding of the P-, E-, and L-selectins to monocytes, especially the inhibition of P-selectin binding to human peripheral blood monocytes (PBMCs) (half maximal inhibitory concentration (IC50~5 μM)) and THP-1 cells (IC50~10 μM). Furthermore, IELLQAR inhibited P-selectin-induced activation of CD11b on the surface of monocytes and decreased adhesion of monocytes to the endothelium. ApoE−/− mice with or without IELLQAR (1 or 3 mg/kg) fed a Western-type diet (WTD) or which had disturbed blood flow-induced shear stress underwent partial left carotid artery ligation (PLCA) to induce atherosclerosis. In the WTD- and PLCA-induced atherosclerosis models, atherosclerotic plaque formation and monocyte/macrophage infiltration of the arterial wall both decreased in ApoE−/− mice treated with the IELLQAR peptide. Our results also revealed that IELLQAR inhibited the differentiation of monocytes into macrophages through P-selectin-dependent activation of the nuclear factor- (NF-) κB and mammalian target of rapamycin (mTOR) pathways. Conclusion Collectively, our results demonstrated that IELLQAR, a peptide analogue of selectin ligands, inhibited selectin binding to monocytes, which led to subsequent attenuation of atherosclerosis via inhibition of monocyte activation. Hence, use of the IELLQAR peptide provides a new approach and represents a promising candidate for the treatment of atherosclerosis in the early stage of disease.
Highlights
Cardiovascular diseases are currently the major causes of mortality worldwide, with atherosclerosis being the most dominant underlying pathology [1]
Circulating monocytes, which play a critical role in the pathogenesis of atherosclerosis, adhere to the endothelium and infiltrate the subendothelial space where they differentiate into macrophages, take up lipids and develop into foam cells [2,3,4]
IELLQAR showed the highest inhibition of P-selectin binding to peripheral blood monocytes (PBMCs) (IC50: ~5 μM) and THP-1 cells (IC50: ~10 μM), with moderate inhibition of E-selectin (IC50: ~12 μM and ~20 μM, respectively) and the lowest inhibition with L-selectin (IC50: ~25 μM and ~30 μM, respectively) (Figures 1(a)–1(c))
Summary
Cardiovascular diseases are currently the major causes of mortality worldwide, with atherosclerosis being the most dominant underlying pathology [1]. Monocyte recruitment involves tethering, rolling, arrest, adhesion, and transmigration In this multistep cascade, selectins bind with glycosylated ligands to mediate the initial “rolling” step. In the WTD- and PLCA-induced atherosclerosis models, atherosclerotic plaque formation and monocyte/macrophage infiltration of the arterial wall both decreased in ApoE-/- mice treated with the IELLQAR peptide. Our results revealed that IELLQAR inhibited the differentiation of monocytes into macrophages through P-selectin-dependent activation of the nuclear factor- (NF-) κB and mammalian target of rapamycin (mTOR) pathways. Our results demonstrated that IELLQAR, a peptide analogue of selectin ligands, inhibited selectin binding to monocytes, which led to subsequent attenuation of atherosclerosis via inhibition of monocyte activation. Use of the IELLQAR peptide provides a new approach and represents a promising candidate for the treatment of atherosclerosis in the early stage of disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.