Abstract

A common requirement in optimal control problems arising in autonomous navigation is that the decision variables are constrained to be outside certain sets. Such set exclusion constraints represent obstacles that must be avoided by the motion system. This paper presents a simple and efficient method for solving optimization problems with general set exclusion and implicit constraints. The method embeds the set exclusion constraints in a quadratic penalty framework and solves the inner optimization problems using a proximal algorithm that deals directly with the implicit constraints. We derive convergence results for this method by transforming the generated iterates to points of a reformulated problem with complementarity constraints. Furthermore, the practical application of the solution method is validated in numerical simulations of a model predictive control approach to path planning for a mobile robot. Finally, a runtime comparison with state-of-the-art solvers applied to the problem with complementarity constraints illustrates the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.