Abstract
Practical industrial process is usually a dynamic process including uncertainty. Stochastic constraints can be used for industrial process modeling, when system sate and/or control input constraints cannot be strictly satisfied. Thus, optimal control of switched systems with stochastic constraints can be available to address practical industrial process problems with different modes. In general, obtaining an analytical solution of the optimal control problem is usually very difficult due to the discrete nature of the switching law and the complexity of stochastic constraints. To obtain a numerical solution, this problem is formulated as a constrained nonlinear parameter selection problem (CNPSP) based on a relaxation transformation (RT) technique, an adaptive sample approximation (ASA) method, a smooth approximation (SA) technique, and a control parameterization (CP) method. Following that, a penalty function-based random search (PFRS) algorithm is designed for solving the CNPSP based on a novel search rule-based penalty function (NSRPF) method and a novel random search (NRS) algorithm. The convergence results show that the proposed method is globally convergent. Finally, an optimal control problem in automobile test-driving with gear shifts (ATGS) is further extended to illustrate the effectiveness of the proposed method by taking into account some stochastic constraints. Numerical results show that compared with other typical methods, the proposed method is less conservative and can obtain a stable and robust performance when considering the small perturbations in initial system state. In addition, to balance the computation amount and the numerical solution accuracy, a tolerance setting method is also provided by the numerical analysis technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.