Abstract
In this paper, we propose a new penalty-free method for solving nonlinear equality constrained optimization. This method uses different trust regions to cope with the nonlinearity of the objective function and the constraints instead of using a penalty function or a filter. To avoid Maratos effect, we do not make use of the second order correction or the nonmonotone technique, but utilize the value of the Lagrangian function instead of the objective function in the acceptance criterion of the trial step. The feasibility restoration phase is not necessary, which is often used in filter methods or some other penalty-free methods. Global and superlinear convergence are established for the method under standard assumptions. Preliminary numerical results are reported, which demonstrate the usefulness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.