Abstract
Molecules capable of mediating charge transport over several nanometers with minimal decay in conductance have fundamental and technological implications. Polymethine cyanine dyes are fascinating molecular wires because up to a critical length, they have no bond-length alternation (BLA) and their electronic structure resembles a one-dimensional free-electron gas. Beyond this threshold, they undergo a symmetry-breaking Peierls transition, which increases the HOMO-LUMO gap. We have investigated cationic cyanines with central polymethine chains of 5-13 carbon atoms (Cy3+-Cy11+). The absorption spectra and crystal structures show that symmetry breaking is sensitive to the polarity of the medium and the size of the counterion. X-ray crystallography reveals that Cy9·PF6 and Cy11·B(C6F5)4 are Peierls distorted, with high BLA at one end of the π-system, away from the partially delocalized positive charge. This pattern of BLA distribution resembles that of solitons in polyacetylene. The single-molecule conductance is essentially independent of molecular length for the polymethine salts of Cy3+-Cy11+ with the large B(C6F5)4- counterion, but with the PF6- counterion, the conductance decreases for the longer molecules, Cy7+-Cy11+, because this smaller anion polarizes the π-system, inducing a symmetry-breaking transition. At higher bias (0.9 V), the conductance of the shorter chains, Cy3+-Cy7+, increases with length (negative attenuation factor, β = -1.6 nm-1), but the conductance still drops in Cy9+ and Cy11+ with the small polarizing PF6- counteranion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.