Abstract
Antimicrobial resistance is a major concern for public health throughout the world that severely restricts available treatments. In this context, methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a high percentage of S. aureus infections and mortality. To overcome this challenge, nanoparticles are appropriate tools as drug carriers to improve the therapeutic efficacy and decrease the toxicity of drugs. In this study, a polyethylene glycol (PEG)ylated nanostructured lipid carrier (PEG-NLC) was synthesized to improve the oral delivery of trimethoprim/sulfamethoxazole (TMP/SMZ) for the treatment of MRSA skin infection in vitro and in vivo. The nanoformulation (PEG-TMP/SMZ-NLC) was synthesized with size and drug encapsulation efficiencies of 187 ± 9 nm and 93.3%, respectively, which could release the drugs in a controlled manner at intestinal pH. PEG-TMP/SMZ-NLC was found efficient in decreasing the drugs’ toxicity by 2.4-fold in vitro. In addition, the intestinal permeability of TMP/SMZ was enhanced by 54%, and the antibacterial effects of the drugs were enhanced by 8-fold in vitro. The results of the stability study demonstrated that PEG-TMP/SMZ-NLC was stable for three months. In addition, the results demonstrated that PEG-TMP/SMZ-NLC after oral administration could decrease the drugs’ side-effects such as renal and hepatic toxicity by ~5-fold in MRSA skin infection in Balb/c mice, while it could improve the antibacterial effects of TMP/SMZ by 3 orders of magnitude. Overall, the results of this study suggest that the application of PEGylated NLC nanoparticles is a promising approach to improving the oral delivery of TMP/SMZ for the treatment of MRSA skin infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.