Abstract

Actuators with sensing functions are becoming increasingly important in the field of soft robotics. However, most of the actuators are lack of self-powered sensing ability, which limits their applications. Here, we report a light-driven actuator with self-powered sensing function, which is designed to incorporate a photo-thermoelectric generator into the actuator based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/MXene composite and polyimide. The actuator shows a large bending curvature of 1.8 cm-1 under near-infrared light (800 mW cm-2) irradiation for 10 s, which is attribute to photothermal expansion mismatch between PEDOT:PSS/MXene composite and polyimide. Simultaneously, the actuator shows enhanced thermoelectric properties with Seebeck coefficient of 35.7 μV K-1, which are mainly attributed to a combination of energy filtering effects between the PEDOT:PSS and MXene interfaces as well as the synergistic effect of its charge carrier migration. The output voltage of the actuator changes in accordance with the bending curvature, so as to achieve the self-powered sensing function and monitor the operating state of the actuator. Moreover, a bionic flower is fabricated, which not only simulates the blooming and closing of the flower, but also perceives the real-time actuation status through the output voltage signal. Finally, a smart Braille system is elaborately designed, which can not only simulate Braille characters for tactile recognition of the blind people, but also automatically output the voltage signal of Braille for self-powered sensing, enabling multi-channel output and conversion of light energy. This research proposes a new idea for exploring multifunctional actuators, integrated devices and self-powered soft robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call