Abstract

Brain-computer interfaces (BCIs) are being investigated as an access pathway to communication for individuals with physical disabilities, as the technology obviates the need for voluntary motor control. However, to date, minimal research has investigated the use of BCIs for children. Traditional BCI communication paradigms may be suboptimal given that children with physical disabilities may face delays in cognitive development and acquisition of literacy skills. Instead, in this study we explored emotional state as an alternative access pathway to communication. We developed a pediatric BCI to identify positive and negative emotional states from changes in hemodynamic activity of the prefrontal cortex (PFC). To train and test the BCI, 10 neurotypical children aged 8–14 underwent a series of emotion-induction trials over four experimental sessions (one offline, three online) while their brain activity was measured with functional near-infrared spectroscopy (fNIRS). Visual neurofeedback was used to assist participants in regulating their emotional states and modulating their hemodynamic activity in response to the affective stimuli. Child-specific linear discriminant classifiers were trained on cumulatively available data from previous sessions and adaptively updated throughout each session. Average online valence classification exceeded chance across participants by the last two online sessions (with 7 and 8 of the 10 participants performing better than chance, respectively, in Sessions 3 and 4). There was a small significant positive correlation with online BCI performance and age, suggesting older participants were more successful at regulating their emotional state and/or brain activity. Variability was seen across participants in regards to BCI performance, hemodynamic response, and discriminatory features and channels. Retrospective offline analyses yielded accuracies comparable to those reported in adult affective BCI studies using fNIRS. Affective fNIRS-BCIs appear to be feasible for school-aged children, but to further gauge the practical potential of this type of BCI, replication with more training sessions, larger sample sizes, and end-users with disabilities is necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.