Abstract

Pedestrian detection plays an essential role in the navigation system of autonomous vehicles. Multisensor fusion-based approaches are usually used to improve detection performance. In this study, we aimed to develop a score fusion-based pedestrian detection algorithm by integrating the data of two light detection and ranging systems (LiDARs). We first evaluated a two-stage object-detection pipeline for each LiDAR, including object proposal and fine classification. The scores from these two different classifiers were then fused to generate the result using the Bayesian rule. To improve proposal performance, we applied two features: the central points density feature, which acts as a filter to speed up the process and reduce false alarms; and the location feature, including the density distribution and height difference distribution of the point cloud, which describes an object’s profile and location in a sliding window. Extensive experiments tested in KITTI and the self-built dataset show that our method could produce highly accurate pedestrian detection results in real-time. The proposed method not only considers the accuracy and efficiency but also the flexibility for different modalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.