Abstract
In this paper, a Pearson’s correlation coefficient based decision tree (PCC-Tree) is established and its parallel implementation is developed in the framework of Map-Reduce (MR-PCC-Tree). The proposed methods employ Pearson’s correlation coefficient as a new measure of feature quality to confirm the optimal splitting attributes and splitting points in the growth of decision trees. Besides, the proposed MR-PCC-Tree adopts Map-Reduce technology to every component during the decision trees learning process for parallel computing, which mainly consists of a parallel Pearson’s correlation coefficient based splitting rule and a parallel splitting data method. The experimental analysis is conducted on a series of UCI benchmark data sets with different scales. In contrast to several traditional decision tree classifiers including BFT, C4.5, LAD, SC and NBT on 17 data sets, the proposed PCC-Tree is no worse than the traditional models as a whole. Furthermore, the experimental results on other 8 data sets show the feasibility of the proposed MR-PCC-Tree and its good parallel performance on reducing computational time for large-scale data classification problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.