Abstract

Comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) is a well-established key technology in analytical chemistry and increasingly used in the field of untargeted metabolomics. However, automated processing of large GC×GC-MS data sets is still a major bottleneck in untargeted, large-scale metabolomics. For this reason we introduce a novel peaklet-based alignment strategy. The algorithm is capable of an untargeted deterministic alignment exploiting a density based clustering procedure within a time constrained similarity matrix. Exploiting minimal 1D and 2D retention time shifts between peak modulations, the alignment is done without the need for peak merging which also eliminates the need for linear or nonlinear retention time correction procedures. The approach is validated in detail using data of urine samples from a large human metabolomics study. The data was acquired by a Shimadzu GCMS-QP2010 Ultra GC×GC-qMS system and consists of 512 runs, including 312 study samples and 178 quality control sample injections, measured within a time period of 22 days. The final result table consisted of 313 analytes, each of these being detectable in at least 75% of the study samples. In summary, we present an automated, reliable and fully transparent workflow for the analysis of large GC×GC-qMS metabolomics data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.