Abstract

We present experimental results demonstrating that a high quality PdO(1 0 1) thin film can be grown on Pd(1 1 1) in ultrahigh vacuum by oxidizing the metal at 500 K using an oxygen atom beam, followed by annealing to 675 K. Low energy electron diffraction (LEED) images show that the [0 1 0] direction of the PdO(1 0 1) thin film aligns with the [−1 1 0] direction of the Pd(1 1 1) substrate, and that the PdO film grows in three degenerate domains, rotated 120° relative to one another. Based on excellent agreement between the experimental and simulated LEED patterns, we conclude that the surface structure of the PdO thin film deviates minimally from bulk-terminated PdO(1 0 1). Recent temperature programmed desorption (TPD) experiments also provide evidence that the PdO(1 0 1) thin film on Pd(1 1 1) is terminated by the stoichiometric surface in which half of the Pd atoms are coordinatively unsaturated (cus), corresponding to a cus-Pd atom density equal to about 35% of the surface density of Pd(1 1 1). The ability to generate a well-defined PdO(1 0 1) surface in ultrahigh vacuum should provide new opportunities for conducting model surface science studies of PdO, particularly studies aimed at elucidating the reactivity of PdO(1 0 1) toward species important in commercial applications of Pd catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call