Abstract

The Alzheimer’s brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer’s Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of β-amyloid (Aβi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 μM in restoring normal insulin-dependent Akt activation and in mitigating Aβi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aβ oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of β-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.

Highlights

  • Clinically-based Alzheimer’s Disease (AD) currently affects 5.8 million or 1 in 10 adults (10%) in the U.S.A. over age 65 and 32% in the >85 age group

  • We had previously shown that cellular β-amyloid expression inhibits PI3K-PDK1-Akt signaling [80, 81, 105]

  • In vivo assays of phospho-Akt/total Akt and downstream substrate, phospho-GSK3β levels were carried out on extracts from cultured neurons exposed to an inducible adenoviral vector encoding Aβ42 [64, 80]

Read more

Summary

Introduction

Clinically-based Alzheimer’s Disease (AD) currently affects 5.8 million or 1 in 10 adults (10%) in the U.S.A. over age 65 and 32% in the >85 age group. Several phase III clinical trials of promising agents to prevent AD progression, based primarily on the amyloid hypothesis, have yielded disappointing overall results. These included anti-amyloid agents such as γ-secretase. PS48 reverses β-amyloid toxicity in neuronal cells and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.