Abstract

Large-area organic light-emitting diodes are thin-film multilayer devices that show pronounced self-heating and brightness inhomogeneities at high currents. As these high currents are typical for lighting applications, a deeper understanding of the mechanisms causing these inhomogeneities is necessary. We discuss the modeling of the interplay between current flow, self-heating, and heat transfer in such devices using a system of partial differential equations of thermistor type, that is capable of explaining the development of luminance inhomogeneities. The system is based on the heat equation for the temperature coupled to a p(x)-Laplace-type equation for the electrostatic potential with mixed boundary conditions. The p(x)-Laplacian allows to take into account non-Ohmic electrical behavior of the different organic layers. Moreover, we present analytical results on the existence, boundedness, and regularity of solutions to the system. A numerical scheme based on the finite-volume method allows for efficient simulations of device structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.