Abstract
We study solution techniques for parabolic equations with fractional diffusion and Caputo fractional time derivative, the latter being discretized and analyzed in a general Hilbert space setting. The spatial fractional diffusion is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. We write our evolution problem as a quasi-stationary elliptic problem with a dynamic boundary condition. We propose and analyze an implicit fully discrete scheme: first-degree tensor product finite elements in space and an implicit finite difference discretization in time. We prove stability and error estimates for this scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.