Abstract

A catalyst composed of monolayer nonstoichiometric titanate nanosheets (denoted as TN) and Pd clusters is constructed for precise synthesis of cyclohexanone from phenol hydrogenation with high conversion (>99%) and selectivity (>99%) in aqueous media under light irradiation. Experimental and DFT calculation results reveal that the surface exposed acid and basic sites on TN could interact with phenol molecules in a nonplanar fashion via a hexahydroxy hydrogen-bonding ring to form a surface coordination species. This greatly facilitates the adsorption and activation of phenol molecules and suppresses the further hydrogenation of cyclohexanone. Moreover, the surface Pd clusters serve as the active sites for the adsorption and dissociation of hydrogen molecules to provide active H atoms. The synergistic effect of the surface coordination species, TN and Pd clusters remarkably facilitate the high yield of cyclohexanone in photocatalysis. Finally, the possible thermo/photocatalytic mechanisms on Pd/TN are propo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.