Abstract

Plasmonic metal nanocrystals (e.g., Au, Ag, and Cu) hold great promise for driving photocatalytic reactions, but little is known about the plasmonic properties of Pd nanocrystals. Herein, we constructed a plasmonic Pd/Ru antenna-reactor photocatalyst through the controllable growth of a Ru nanoarray 'reactor' on a Pd nano-octahedron 'antenna' and demonstrated a plasmonic Pd-driven N2 photofixation process. The plasmonic properties of Pd nano-octahedrons were verified using finite-difference time-domain (FDTD) simulations and refractive index sensitivity tests in water-glycerol mixtures. Notably, the constructed plasmonic antenna-reactor nanostructures exhibited superior photocatalytic activities during N2 photofixation, with a maximum ammonia production rate of 117.5 ± 15.0 μmol g-1 h-1 under visible and near-infrared (NIR) light illumination. The mechanism can be attributed to the ability of the plasmonic Pd nanoantennas to harvest light to generate abundant hot electrons and the Ru nanoreactors to provide active sites for adsorption and activation of N2. This work paves the way for the development of Pd-based plasmonic photocatalysts for efficient N2 photofixation and sheds new light on the optimal design and construction of antenna-reactor nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call