Abstract
The beak and feather disease virus (family Circovirdae) is a virus of concern in the conservation of wild Psittaciformes globally. We conducted a PCR screening for the beak and feather disease virus (BFDV) using samples collected during previous field studies (1993–2014) in five populations of parrots of the Southern Hemisphere: Eclectus parrots (Eclectus roratus) and Crimson rosellas (Platycercus elegans) from Australia, Burrowing parrots (Cyanoliseus patagonus) and Monk parakeets from Argentina (Myiopsitta monachus), and Forbes’ parakeet from New Zealand (Cyanoramphus forbesi). A total of 612 samples were screened. BFDV was not detected in any of the sampled birds. Our results provide a retrospective screening, covering three different tribes of Old and New World parrots, including two of the most numerous species, and contributing a large set of negative results. Furthermore, our results suggest that geographical and temporal differences in BFDV distribution may exist and merit further research, as a critical component in the efforts to manage the disease and its epidemiological aspects. The results presented here hold the potential to provide a baseline for future studies investigating the temporal evolution and the spread of BFDV.
Highlights
Existing and emerging pathogens can drive rapid changes in population numbers and in the genetic diversity of the wild host population [1]
We did not detect beak and feather disease virus (BFDV) in any of the blood samples investigated by PCR
Our negative results suggest that BFDV was not present in the studied populations at the time of sampling, and show some differences with previous studies, which could be related to temporal, geographical and captive versus wild population differences in BFDV prevalence and distribution
Summary
Existing and emerging pathogens can drive rapid changes in population numbers and in the genetic diversity of the wild host population [1]. The virus has been reported as infecting over 10% of known parrot species, a figure that comes mostly from studies on captive birds [8,18,41,42]. The advances in molecular techniques to detect the virus
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.