Abstract

The accurate quantification of disease severity is important for the assessment of host-pathogen interactions in laboratory or field settings. The interaction between Arabidopsis thaliana and its naturally occurring downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa), is a widely used reference pathosystem for plant-oomycete interactions. Current methods for the assessment of disease severity in the Arabidopsis-Hpa interaction rely on measurements at the terminal stage of pathogen development; namely, visual counts of spore-producing structures or the quantification of spore production with a haemocytometer. These assays are useful, but do not offer sensitivity for the robust quantification of small changes in virulence or the accurate quantification of pathogen growth prior to the reproductive stage. Here, we describe a quantitative real-time polymerase chain reaction (qPCR) assay for the monitoring of Hpa growth in planta. The protocol is rapid, inexpensive and can robustly distinguish small changes in virulence. We used this assay to investigate the dynamics of early Hpa mycelial growth and to demonstrate the proof of concept that this assay could be used in screens for novel oomycete growth inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.