Abstract
A PCR assay for the detection of Bacillus cereus strains able to produce an emetic toxin (cereulide) was developed in this study based on a sequence-characterized amplified region (SCAR) derived from a random amplified polymorphic DNA (RAPD) fragment. One of the RAPD fragments generated was selected, cloned, and sequenced. A set of PCR primers was newly designed from the SCAR obtained (the sequence of the cloned RAPD fragment) and used in this assay. To determine the specificity of the assay, 30 different B. cereus strains, 8 other Bacillus strains (of six species), and 16 other non-Bacillus strains (from 16 genera) were tested. Results were positive for every emetic B. cereus strain and for only one nonemetic B. cereus strain. For all other bacterial strains, results were negative. Bacterial DNA for PCR was prepared by a simple procedure using Chelex 100 resin from the bacterial colony on the agar plate or from culture after growth in brain heart infusion medium. This PCR assay enabled us to detect the bacteria of emetic B. cereus grown on agar plates but not the bacteria of nonemetic B. cereus. To test this PCR assay for the monitoring of the emetic bacteria, 10 to 70 CFU of B. cereus DSM 4312 (emetic) per g of food was inoculated into several foods as an indicator, followed by a 7-h enrichment culture step. Because this PCR assay based on the SCAR derived from the RAPD fragment was able to detect bacterial cells, this assay should be useful for rapid and specific detection of emetic B. cereus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.