Abstract

Computational results for modeling one-dimensional stress relaxation, creep, fatigue, and creep-fatigue interaction phenomena of metals at elevated temperatures using a unifying thermodynamic theory of viscoplasticity are presented. The theory incorporates in a nonequilibrium formulation the idea of a “concealed” parameter α, originally due to Bridgman (1950), where the constitutive equations are governed by 1) a thermodynamic potential such as the Helmholtz free energy function F with an explicit dependence on α, and 2) a prescription for α˙, the time rate of change of α, such that α˙ is proportional to −Fα, the negative of the partial derivative of F with respect to α. Significance of the results and a comparison with other modeling tools in the literature are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.